skip to main |
skip to sidebar
Oxirreductasas
Catalizan reacciones de oxidorreducción o redox. Precisan la colaboración de las coenzimas de oxidorreducción (NAD+, NADP+, FAD) que aceptan o ceden los electrones correspondientes; tras la acción catalítica, estas coenzimas quedan modificadas en su grado de oxidación, por lo que deben ser transformadas antes de volver a efectuar la reacción catalítica.
Ejemplos: deshidrogenasas, peroxidasas.
TransferasasTransfieren grupos activos (obtenidos de la ruptura de ciertas moléculas) a otras sustancias receptoras. Suelen actuar en procesos de interconversión de monosacáridos, aminoácidos, etc.
Ejemplos: transaminasas, quinasas.
Hidrolasas
Verifican reacciones de hidrólisis con la consiguiente obtención de monómeros a partir de polímeros. Actúan en la digestión de los alimentos, previamente a otras fases de su degradación. La palabra hidrólisis se deriva de hidro 'agua' y lisis 'disolución'.
Ejemplos: glucosidasas, lipasas, esterasas.
Isomerasas
Actúan sobre determinadas moléculas obteniendo de ellas sus isómeros de función o de posición, es decir catalizan la racemizacion y cambios de pocicion de un grupo en determinada molecula obteniendo formas isomericas . Suelen actuar en procesos de interconversión.
Ejemplo: epimerasas (mutasa).
Liasas
Catalizan reacciones en las que se eliminan grupos (H2O, CO2 y NH3) para formar un doble enlace o añadirse a un doble enlace, capaces de catalizar la reducción en un sustrato. El sustrato es una molécula, la cual, se une al sitio activo de la enzima para la formación del complejo enzima-sustrato. El mismo, por acción de la enzima, es transformado en producto y es liberado del sitio activo, quedando libre para recibir otro sustrato.
Ejemplos: descarboxilasas, liasas.
Ligasas
Realizan la degradación o síntesis de los enlaces denominados "fuertes" mediante al acoplamiento a sustancias de alto valor energético (como el ATP).
Especificidad
Las enzimas suelen ser muy específicas tanto del tipo de reacción que catalizan como del sustrato involucrado en la reacción. La forma, la carga y las características hidrofílicas/hidrofóbicas de las enzimas y los sustratos son los responsables de dicha especificidad. Las enzimas también pueden mostrar un elevado grado de estereoespecificidad, regioselectividad y quimioselectividad.
Algunas de estas enzimas que muestran una elevada especificidad y precisión en su actividad son aquellas involucradas en la replicación y expresión del genoma. Estas enzimas tienen eficientes sistemas de comprobación y corrección de errores, como en el caso de la ADN polimerasa, que cataliza una reacción de replicación en un primer paso, para comprobar posteriormente si el producto obtenido es el correcto. Este proceso, que tiene lugar en dos pasos, da como resultado una media de tasa de error increíblemente baja, en torno a 1 error cada 100 millones de reacciones en determinadas polimerasas de mamíferos. Este tipo de mecanismos de comprobación también han sido observados en la ARN polimerasa, en la ARNt aminoacil sintetasa y en los ribosomas.
Aquellas enzimas que producen metabolitos secundarios son denominadas promiscuas, ya que pueden actuar sobre una gran variedad de sustratos. Por ello, se ha sugerido que esta amplia especificidad de sustrato podría ser clave en la evolución y diseño de nuevas rutas biosintéticas.
Modelo de la "llave-cerradura"
Las enzimas son muy específicas, esto fue sugerido por Emil Fisher en 1894. En base a sus resultados dedujo que ambas moléculas (enzima y sustrato) poseen complementariedad geométrica, cuyas formas encajan exactamente una con otra. Esto es citado comúnmente como "la llave-cerradura", refiriéndose a la enzima como una especie de cerradura y al sustrato como una llave que encaja de forma perfecta en la cerradura. Sin embargo, si bien este modelo explica la especificidad de las enzimas, falla al explicar la estabilización del estado de transición que las enzimas logran.
Modelo del encaje inducido
En 1958 Daniel Koshland sugiere una modificación al modelo de la llave-cerradura: las enzimas son estructuras bastante flexibles, el sitio activo puede ser reformado por la interacción con el sustrato. Como resultado de ello, la cadena aminoacídica que compone el sitio activo es moldeada en posiciones precisas que permite a la enzima llevar a cabo su función catalítica. En algunos casos, como en las glicosidasas, el sustrato cambia ligeramente de forma para entrar en el sitio activo.
Modulación alostérica
Los cambios alostéricos (zonas de la enzima diferentes al sitio activo) permiten un cambio estructural de la proteína en respuesta a la unión de efectores. La modulación puede ser directa, cuando el efector se une directamente a sitios de unión en la enzima, o indirecta, donde el efector se une a otra proteína o a una subunidad proteíca que interactúa con la enzima alostérica y que influencia la actividad catalítica.
Las enzimas son generalmente proteínas globulares que pueden presentar tamaños muy variables, desde 62 aminoácidos como en el caso del monómero de la 4-oxalocrotonato tautomerasa,[9] hasta los 2.500 presentes en la sintasa de ácidos grasos.[10]
Las actividades de las enzimas vienen determinadas por su estructura tridimensional.[11] Casi todas las enzimas son mucho más grandes que los sustratos sobre los que actúan, y solo una pequeña parte de la enzima (alrededor de 3 a 4 aminoácidos) están directamente involucrados en la catálisis.[12] La región que contiene estos residuos encargados de catalizar la reacción es conocida como centro activo. Las enzimas también pueden contener sitios con la capacidad de unir cofactores, necesarios a veces en el proceso de catálisis, o de unir pequeñas moléculas, como los sustratos o productos (directos o indirectos) de la reacción catalizada. Estas uniones pueden incrementar o disminuir la actividad enzimática, dando lugar así a una regulación por retroalimentación.
Al igual que las demás proteínas, las enzimas se componen de una cadena lineal de aminoácidos que se pliegan durante el proceso de traducción para dar lugar a una estructura terciaria tridimensional de la enzima, susceptible de presentar actividad. Cada secuencia de aminoácidos es única y por tanto da lugar a una estructura única, con propiedades únicas. En ocasiones, proteínas individuales pueden unirse a otras proteínas para formar complejos, en lo que se denomina estructura cuaternaria de las proteínas.
La mayoría de las enzimas, al igual que el resto de las proteínas, pueden ser desnaturalizadas si se ven sometidas a agentes desnaturalizantes como el calor, los pHs extremos o ciertos compuestos como el SDS. Estos agentes destruyen la estructura terciaria de las proteínas de forma reversible o irreversible, dependiendo de la enzima y de la condición.
En bioquímica, se llaman enzimas a las sustancias de naturaleza proteica que catalizan reacciones químicas, siempre que sea termodinámicamente posible (si bien no pueden hacer que el proceso sea más termodinámicamente favorable). En estas reacciones, las enzimas actúan sobre unas moléculas denominadas sustratos, las cuales se convierten en diferentes moléculas, los productos. Casi todos los procesos en las células necesitan enzimas para que ocurran en tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas.
Debido a que las enzimas son extremadamente selectivas con sus sustratos y su velocidad crece sólo con algunas reacciones de entre otras posibilidades, el conjunto (set) de enzimas sintetizadas en una célula determina el metabolismo que ocurre en cada célula. A su vez, esta síntesis depende de la regulación de la expresión génica.
Como todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación (ΔG‡) de una reacción, de forma que se acelera sustancialmente la tasa de reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada.
Al igual que ocurre con otros catalizadores, las enzimas no son consumidas por las reacciones que ellas catalizan, ni alteran su equilibrio químico. Sin embargo, las enzimas difieren de otros catalizadores por ser más específicas. Las enzimas catalizan alrededor de 4.000 reacciones bioquímicas distintas.[1] No todos los catalizadores bioquímicos son proteínas, pues algunas moléculas de ARN son capaces de catalizar reacciones (como el fragmento 16S de los ribosomas en el que reside la actividad peptidil transferasa).
La actividad de las enzimas puede ser afectada por otras moléculas. Los inhibidores enzimáticos son moléculas que disminuyen o impiden la actividad de las enzimas, mientras que los activadores son moléculas que incrementan la actividad. Asimismo, gran cantidad de enzimas requieren de cofactores para su actividad. Muchas drogas o fármacos son moléculas inhibidoras. Igualmente, la actividad es afectada por la temperatura, el pH, la concentración de la propia enzima y del sustrato y otros factores físico-químicos.
Algunas enzimas son usadas comercialmente, por ejemplo, en la síntesis de antibióticos y productos domésticos de limpieza. Además, ampliamente utilizadas en variados procesos industriales, como son la fabricación de alimentos, producción de biocombustibles.
PurificaciónProceso que cuenta con varias etapas cuyo objetivo es lograr la concentración diferencial de la proteína o molécula de interés.
Condiciones generales a evaluar
•Calidad(% de pureza del producto de acuerdo a mis objetivos)
secuenciación, cristalización
ensayo de actividad, productos alimenticios médicos
•Cantidad técnicas de alta capacidad y de baja capacidad
preparativas
analíticas
•Costos
Pasos a seguir en una purificación
1.Definir un ensayo específico que identifique a la proteína (actividad biológica) (específico, sensible, rápido y barato)
2.Elegir la fuente (matriz biológica)
3.Extraer la proteína de la fuente (proteínas intraceluares o extracelulares)
4.Estabilización de la molécula
5.Aislamiento y concentración(fraccionamiento)
6.Determinar la pureza y calidad del producto final
1 Actividad Biológica
Cantidad de proteína que produce, por su acción biológica, un determinado cambio.
Este cambio puede ser:
•Un efecto biológico (Muerte celular, hemólisis, protección inmunológica)
•Variación en la cantidad de una sustancia química (producto de una reacción)
De esta forma podemos definir a la unidad de actividad biológicacomo :
Una unidad de Actividad Biológicaes la cantidad de proteína que produce una determinada cantidad de "efecto"
1.Toxina
Una unidad de AB para una toxina es la cantidad de proteína que produce la muerte del 23% de los ratones de tal especie (siguen especificaciones…)
2.Enzima
Una unidad de AB para una enzima es la cantidad de proteína que produce 5.98 moles de producto en 1 minuto en condiciones …(siguen especificaciones…)
Aislamiento y concentración
Fraccionamiento del extracto crudo
•Implica una serie de pasos en los cuales se aprovechan propiedades fisicoquímicas o biológicas de la proteína de interés para separarla del resto de las moléculas
•Cada paso debe ser monitoreado adecuadamente para evaluar el rendimiento en la purificación, pureza y actividad específica decada fracción obtenida.
•Si bien no hay una sola secuencia de técnicas a seguir, en general se recomienda empezar por técnicas de alta capacidad y seguir con las de baja capacidad.
•En general se desea obtener una gran pureza (según los objetivos) acompañada de un gran rendimiento.
Desnaturalización (bioquímica)En bioquímica, la desnaturalización es un cambio estructural de las proteínas o ácidos nucleicos, donde pierden su estructura nativa, y de esta forma su óptimo funcionamiento y a veces también cambian sus propiedades físico-químicas.Desnaturalización irreversible de la proteína de la clara de huevo y pérdida de solubilidad, causadas por la alta temperatura (mientras se la fríe)Las proteínas se desnaturalizan cuando pierden su estructura tridimensional (conformación química) y así su característico plegamiento de su estructura.Las proteínas son filamentos largos de aminoácidos unidos en una secuencia específica. Son creadas por los ribosomas que "leen" codones de los genes y ensamblan la combinación requerida de aminoácidos por la instrucción genética. Las proteínas recién creadas experimentan una modificación en la que se agregan átomos o moléculas adicionales, como el cobre, zinc e hierro. Una vez que finaliza este proceso, la proteína comienza a plegarse sin alterar su secuencia (espontáneamente, y a veces con asistencia de enzimas) de forma tal que los residuos hidrófobos de la proteína quedan encerrados dentro de su estructura y los elementos hidrófilos quedan expuestos al exterior. La forma final de la proteína determina cómo interaccionará con el entorno.Si la forma de la proteína es alterada por algún factor externo (por ejemplo, aplicándole calor, ácidos o álcalis), no es capaz de cumplir su función celular. Éste es el proceso llamado desnaturalización.Cómo la desnaturalización afecta a los distintos niveles:En la desnaturalización de la estructura cuaternaria, las subunidades de proteínas se separan o su posición espacial se corrompe.La desnaturalización de la estructura terciaria implica la interrupción de:Enlaces covalentes entre las cadenas laterales de los aminoácidos (como los puentes disulfuros entre las cisteínas).Enlaces no covalentes dipolo-dipolo entre cadenas laterales polares de aminoácidos.Enlaces dipolo inducidos por fuerzas de Van Der Waals entre cadenas laterales no polares de aminoácidos.En la desnaturalización de la estructura secundaria las proteínas pierden todos los patrones de repetición regulares como las hélices alfa y adoptan formas aleatorias.La estructura primaria, la secuencia de aminoácidos ligados por enlaces peptídicos, no es interrumpida por la desnaturalización.Pérdida de su función [editar]La mayoría de las proteínas pierden su función biológica cuando están desnaturalizadas, por ejemplo, las enzimas pierden su actividad catalítica, porque los sustratos no pueden unirse más al sitio activo, y porque los residuos del aminoácido implicados en la estabilización de los sustratos no están posicionados para hacerlo.Reversibilidad e irreversibilidad [editar]En muchas proteínas (a diferencia de lo que pasa con la proteína de la clara de huevo), la desnaturalizacion no es reversible; esto depende del grado de modificación de las estructuras de la proteína.Aunque se ha podido revertir procesos de desnaturalización quitando el agente desnaturalizante,en un proceso que puede tardar varias horas incluso dias;esto se debe a que el proceso de reestructuración de la proteína es tentativo,es decir, no asume su forma original inmediatamente,así muchas veces se obtienen proteínas distintas a la incial,además con otras características como insolubilidad (debido a los agregados polares que puedan unirsele). Recientemente se ha descubierto que,para una correcta renaturalización,es necesario agregar trazas del agente desnaturalizante. Esto fue importante históricamente, porque condujo a la noción de que toda la información necesaria para que la proteína adopte su forma nativa se encuentra en la estructura primaria de la proteína, y por lo tanto en el ADN que la codifica.Algunos ejemplos comunes [editar]Cuando se cocina el alimento, algunas de sus proteínas se desnaturalizan. Esta es la razón por la cual los huevos hervidos llegan a ser duros y la carne cocinada llega a ser firme.Un ejemplo clásico de desnaturalización de proteínas se da en la clara de los huevos, que son en gran parte albúminas en agua. En los huevos frescos, la clara es transparente y líquida; pero al cocinarse se torna opaca y blanca, formando una masa sólida intercomunicada. Esa misma desnaturalización puede producirse a través de una desnaturalización química, por ejemplo volcándola en un recipiente con acetona. Otro ejemplo es la nata (nombre que proviene de la desnaturalización), que se produce por calentamiento de la lactoalbúmina de la leche (y que no tiene nada que ver con la crema).Desnaturalización de ácidos nucleicos [editar]La desnaturalización de ácidos nucleicos como el ADN por altas temperaturas produce una separación de la doble hélice, que ocurre porque los enlaces o puentes de hidrógeno se rompen. Esto puede ocurrir durante la reacción en cadena de la polimerasa; las cadenas del ácido nucleico vuelven a unirse (renaturalizarse) una vez que las condiciones "normales" se restauran. Si las condiciones son restauradas demasiado rápidamente, las cadenas pueden no alinearse correctamente.Factores desnaturalizantes [editar]Los agentes que provocan la desnaturalización de una proteína se llaman agentes desnaturalizantes. Se distinguen agentes físicos (calor) y químicos (detergentes, disolventes orgánicos, pH, fuerza iónica). Como en algunos casos el fenómeno de la desnaturalización es reversible, es posible precipitar proteínas de manera selectiva mediante cambios en:1. la polaridad del disolvente,2. la fuerza iónica,3. el pH,4. la temperatura.Efecto de la polaridad del disolvente sobre la estructura de las proteínas.La polaridad del disolvente disminuye cuando se le añaden sustancias menos polares que el agua como el etanol o la acetona. Con ello disminuye el grado de hidratación de los grupos iónicos superficiales de la molécula proteica, provocando la agregación y precipitación. Los disolventes orgánicos interaccionan con el interior hidrófobo de las proteínas y desorganizan la estructura terciaria, provocando su desnaturalización y precipitación. La acción de los detergentes es similar a la de los disolventes orgánicos.Estructura de las proteínasUn aumento de la fuerza iónica del medio (por adición de sulfato amónico, urea o cloruro de guanidinio, por ejemplo) también provoca una disminución en el grado de hidratación de los grupos iónicos superficiales de la proteína, ya que estos solutos (1) compiten por el agua y (2) rompen los puentes de hidrógeno o las interacciones electrostáticas, de forma que las moléculas proteicas se agregan y precipitan. En muchos casos, la precipitación provocada por el aumento de la fuerza iónica es reversible. Mediante una simple diálisis se puede eliminar el exceso de soluto y recuperar tanto la estructura como la función original. A veces es una disminución en la fuerza iónica la que provoca la precipitación. Así, las proteínas que se disuelven en medios salinos pueden desnaturalizarse al dializarlas frente a agua destilada, y se renaturalizan cuando se restaura la fuerza iónica original.Efecto del pH sobre la estructura de las proteínas. Los iones H+ y OH- del agua provocan efectos parecidos, pero además de afectar a la envoltura acuosa de las proteínas también afectan a la carga eléctrica de los grupos ácidos y básicos de las cadenas laterales de los aminoácidos. Esta alteración de la carga superficial de las proteínas elimina las interacciones electrostáticas que estabilizan la estructura terciaria y a menudo provoca su precipitación. La solubilidad de una proteína es mínima en su punto isoeléctrico, ya que su carga neta es cero y desaparece cualquier fuerza de repulsión electrostática que pudiera dificultar la formación de agregados.