Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios Proteo, por la cantidad de formas que pueden tomar.
Las proteínas desempeñan un papel fundamental en los seres vivos y son las biomoléculas más versátiles y más diversas. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:
estructural (colágeno y queratina),
reguladora (insulina y hormona del crecimiento),
transportadora (hemoglobina),
defensiva (anticuerpos),
enzimática,
contráctil (actina y miosina).
Las proteínas de todo ser vivo están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.
Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son suceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.
Características
Las proteínas son macromoléculas; son biopolímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas.
Por hidrólisis, las moléculas de proteía se escinden en numerosos compuestos relativamente simples, de masa pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.
Todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.
La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.
Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y el grupo amino (-NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína está codificada en su gen (una porción de ADN) mediante el código genético. Aunque este código genético especifica los 20 aminoácidos "estándar" más la selenocisteína y —en ciertos Archaea— la pirrolisina, los residuos en una proteína sufren a veces modificaciones químicas en la modificación postraduccional: antes de que la proteína sea funcional en la célula, o como parte de mecanismos de control. Las proteínas también pueden trabajar juntas para cumplir una función particular, a menudo asociándose para formar complejos proteicos estables.
Las proteínas son macromoléculas; son biopolímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas.
Por hidrólisis, las moléculas de proteía se escinden en numerosos compuestos relativamente simples, de masa pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.
Todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.
La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.
Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y el grupo amino (-NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína está codificada en su gen (una porción de ADN) mediante el código genético. Aunque este código genético especifica los 20 aminoácidos "estándar" más la selenocisteína y —en ciertos Archaea— la pirrolisina, los residuos en una proteína sufren a veces modificaciones químicas en la modificación postraduccional: antes de que la proteína sea funcional en la célula, o como parte de mecanismos de control. Las proteínas también pueden trabajar juntas para cumplir una función particular, a menudo asociándose para formar complejos proteicos estables.
Funciones
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas
casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes;
muchas hormonas, reguladores de actividades celulares;
la hemoglobina y otras moléculas con funciones de transporte en la sangre;
los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños;
los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada;
la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción;
el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas
casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes;
muchas hormonas, reguladores de actividades celulares;
la hemoglobina y otras moléculas con funciones de transporte en la sangre;
los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños;
los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada;
la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción;
el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.
Estructura
Es la manera como se organiza una proteína para adquirir cierta forma. Presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura, pH, etc. pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos.
Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.
Conformaciones o niveles estructurales de la disposición tridimensional:
Estructura primaria.
Estructura secundaria.
Nivel de dominio.
Estructura terciaria.
Estructura cuaternaria.
A partir del nivel de dominio sólo las hay globulares.
Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.
Conformaciones o niveles estructurales de la disposición tridimensional:
Estructura primaria.
Estructura secundaria.
Nivel de dominio.
Estructura terciaria.
Estructura cuaternaria.
A partir del nivel de dominio sólo las hay globulares.
Propiedades de las proteínas
Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.
Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.
Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.
Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (aceptando electrones) o como bases (donando electrones).
Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.
Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.
Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.
Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (aceptando electrones) o como bases (donando electrones).
Desnaturalización
Si en una disolución de proteínas se producen cambios de pH, alteraciones en la concentración, agitación molecular o variaciones bruscas de temperatura, la solubilidad de las proteínas puede verse reducida hasta el punto de producirse su precipitación. Esto se debe a que los enlaces que mantienen la conformación globular se rompen y la proteína adopta la conformación filamentosa. De este modo, la capa de moléculas de agua no recubre completamente a las moléculas proteicas, las cuales tienden a unirse entre sí dando lugar a grandes partículas que precipitan. Además, sus propiedades biocatalizadores desaparecen al alterarse el centro activo. Las proteínas que se hallan en ese estado no pueden llevar a cabo la actividad para la que fueron diseñadas, en resumen, no son funcionales.
Esta variación de la conformación se denomina desnaturalización. La desnaturalización no afecta a los enlaces peptídicos: al volver a las condiciones normales, puede darse el caso de que la proteína recupere la conformación primitiva, lo que se denomina renaturalización.
Ejemplos de desnaturalización son la leche cortada como consecuencia de la desnaturalización de la caseína, la precipitación de la clara de huevo al desnaturalizarse la ovoalbúmina por efecto del calor o la fijación de un peinado del cabello por efecto de calor sobre las queratinas del pelo.
Esta variación de la conformación se denomina desnaturalización. La desnaturalización no afecta a los enlaces peptídicos: al volver a las condiciones normales, puede darse el caso de que la proteína recupere la conformación primitiva, lo que se denomina renaturalización.
Ejemplos de desnaturalización son la leche cortada como consecuencia de la desnaturalización de la caseína, la precipitación de la clara de huevo al desnaturalizarse la ovoalbúmina por efecto del calor o la fijación de un peinado del cabello por efecto de calor sobre las queratinas del pelo.
Reacciones de reconocimiento
Reacción de Biuret
El reactivo de Biuret está formado por una disolución de sulfato de cobre en medio alcalino, este reconoce el enlace peptídico de las proteínas mediante la formación de un complejo de coordinación entre los iones Cu2+ y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos, lo que produce una coloración rojo-violeta.
Reacción de Millon
Reconoce residuos fenólicos, o sea aquellas proteínas que contengan tirosina. Las proteínas se precipitan por acción de los ácidos inorgánicos fuertes del reactivo, dando un precipitado blanco que se vuelve gradualmente rojo al calentar.
Reacción xantoproteica
Reconoce grupos aromáticos, o sea aquellas proteínas que contengan tirosina o fenilalanina, con las cuales el ácido nítrico forma compuestos nitrados amarillos.
Reacción de Biuret
El reactivo de Biuret está formado por una disolución de sulfato de cobre en medio alcalino, este reconoce el enlace peptídico de las proteínas mediante la formación de un complejo de coordinación entre los iones Cu2+ y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos, lo que produce una coloración rojo-violeta.
Reacción de Millon
Reconoce residuos fenólicos, o sea aquellas proteínas que contengan tirosina. Las proteínas se precipitan por acción de los ácidos inorgánicos fuertes del reactivo, dando un precipitado blanco que se vuelve gradualmente rojo al calentar.
Reacción xantoproteica
Reconoce grupos aromáticos, o sea aquellas proteínas que contengan tirosina o fenilalanina, con las cuales el ácido nítrico forma compuestos nitrados amarillos.
Digestión de proteínas
La digestión de las proteínas se inicia típicamente en el estómago cuando el pepsinógeno es convertido a pepsina por la acción del ácido clorhídrico, y continúa por la acción de la tripsina y la quimotripsina en el intestino. Las proteínas de la dieta son degradadas a péptidos cada vez más pequeños y éstos hasta aminoácidos y sus derivados, que son absorbidos por el epitelio gastrointestinal. La tasa de absorción de los aminoácidos individuales es altamente dependiente de la fuente de proteínas; por ejemplo la digeribilidad de muchos aminoácidos en humanos difiere entre la proteína de la soja y la proteína de la leche y entre proteínas de la leche individuales, como beta-lactoglobulina y caseína. Para las proteínas de la leche, aproximadamente el 50% de la proteína ingerida se absorbe en el estómago o el yeyuno y el 90% se ha absorbido ya cuando los alimentos ingeridos alcanzan el íleon.
Además de su rol en la síntesis de proteínas, los aminoácidos también son una importante fuente nutricional de nitrógeno. Las proteínas, como los carbohidratos, contienen 4 kilocalorías por gramo, mientras que a los lípidos contienen 9 kcal y los alcoholes 7 kcal. Las proteínas pueden ser convertidas en carbohidratos a través de un proceso llamado gluconeogénesis.
La digestión de las proteínas se inicia típicamente en el estómago cuando el pepsinógeno es convertido a pepsina por la acción del ácido clorhídrico, y continúa por la acción de la tripsina y la quimotripsina en el intestino. Las proteínas de la dieta son degradadas a péptidos cada vez más pequeños y éstos hasta aminoácidos y sus derivados, que son absorbidos por el epitelio gastrointestinal. La tasa de absorción de los aminoácidos individuales es altamente dependiente de la fuente de proteínas; por ejemplo la digeribilidad de muchos aminoácidos en humanos difiere entre la proteína de la soja y la proteína de la leche y entre proteínas de la leche individuales, como beta-lactoglobulina y caseína. Para las proteínas de la leche, aproximadamente el 50% de la proteína ingerida se absorbe en el estómago o el yeyuno y el 90% se ha absorbido ya cuando los alimentos ingeridos alcanzan el íleon.
Además de su rol en la síntesis de proteínas, los aminoácidos también son una importante fuente nutricional de nitrógeno. Las proteínas, como los carbohidratos, contienen 4 kilocalorías por gramo, mientras que a los lípidos contienen 9 kcal y los alcoholes 7 kcal. Las proteínas pueden ser convertidas en carbohidratos a través de un proceso llamado gluconeogénesis.
No hay comentarios:
Publicar un comentario